Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters








Language
Year range
1.
Experimental & Molecular Medicine ; : e261-2016.
Article in English | WPRIM | ID: wpr-117337

ABSTRACT

CTHRC1 (collagen triple-helix repeat-containing 1), a protein secreted during the tissue-repair process, is highly expressed in several malignant tumors, including pancreatic cancer. We recently showed that CTHRC1 has an important role in the progression and metastasis of pancreatic cancer. Although CTHRC1 secretion affects tumor cells, how it promotes tumorigenesis in the context of the microenvironment is largely unknown. Here we identified a novel role of CTHRC1 as a potent endothelial activator that promotes angiogenesis by recruiting bone marrow-derived cells to the tumor microenvironment during tumorigenesis. Recombinant CTHRC1 (rCTHRC1) enhanced endothelial cell (EC) proliferation, migration and capillary-like tube formation, which was consistent with the observed increases in neovascularization in vivo. Moreover, rCTHRC1 upregulated angiopoietin-2 (Ang-2), a Tie2 receptor ligand, through ERK-dependent activation of AP-1 in ECs, resulting in recruitment of Tie2-expressing monocytes (TEMs) to CTHRC1-overexpressing tumor tissues. Treatment with a CTHRC1-neutralizing antibody-abrogated Ang-2 expression in the ECs in vitro. Moreover, administration of a CTHRC1-neutralizing antibody to a xenograft mouse model reduced the tumor burden and infiltration of TEMs in the tumor tissues, indicating that blocking the CTHRC1/Ang-2/TEM axis during angiogenesis inhibits tumorigenesis. Collectively, our findings support the hypothesis that CTHRC1 induction of the Ang-2/Tie2 axis mediates the recruitment of TEMs, which are important for tumorigenesis and can be targeted to achieve effective antitumor responses in pancreatic cancers.


Subject(s)
Animals , Mice , Angiopoietin-2 , Carcinogenesis , Endothelial Cells , Heterografts , In Vitro Techniques , Monocytes , Neoplasm Metastasis , Pancreatic Neoplasms , Receptor, TIE-2 , Transcription Factor AP-1 , Tumor Burden , Tumor Microenvironment
2.
Experimental & Molecular Medicine ; : e246-2016.
Article in English | WPRIM | ID: wpr-167183

ABSTRACT

Aberrant expression of BORIS/CTCFL (Brother of the Regulator of Imprinted Sites/CTCF-like protein) is reported in different malignancies. In this study, we characterized the entire promoter region of BORIS/CTCFL, including the CpG islands, to assess the relationship between BORIS expression and lung cancer. To simplify the construction of luciferase reporter cassettes with various-sized portions of the upstream region, genomic copies of BORIS were isolated using TAR cloning technology. We analyzed three promoter blocks: the GATA/CCAAT box, the CpG islands and the minisatellite region BORIS-MS2. Polymorphic minisatellite sequences were isolated from genomic DNA prepared from the blood of controls and cases. Of the three promoter blocks, the GATA/CCAAT box was determined to be a critical element of the core promoter, while the CpG islands and the BORIS-MS2 minisatellite region were found to act as regulators. Interestingly, the polymorphic minisatellite region BORIS-MS2 was identified as a negative regulator that repressed the expression levels of luciferase reporter cassettes less effectively in cancer cells compared with normal cells. We also examined the association between the size of BORIS-MS2 and lung cancer in a case–control study with 590 controls and 206 lung cancer cases. Rare alleles of BORIS-MS2 were associated with a statistically significantly increased risk of lung cancer (odds ratio, 2.04; 95% confidence interval, 1.02–4.08; and P=0.039). To conclude, our data provide information on the organization of the BORIS promoter region and gene regulation in normal and cancer cells. In addition, we propose that specific alleles of the BORIS-MS2 region could be used to identify the risk for lung cancer.


Subject(s)
Alleles , Clone Cells , Cloning, Organism , CpG Islands , DNA , Gene Expression , Luciferases , Lung Neoplasms , Lung , Minisatellite Repeats , Promoter Regions, Genetic
3.
Experimental & Molecular Medicine ; : 291-297, 2011.
Article in English | WPRIM | ID: wpr-168748

ABSTRACT

Pancreatic cancer is a notorious disease with a poor prognosis and low survival rates, which is due to limited advances in understanding of the molecular mechanism and inadequate development of effective treatment options over the decades. In previous studies, we demonstrated that a novel soluble protein named pancreatic adenocarcinoma up-regulated factor (PAUF) acts on tumor and immune cells and plays an important role in metastasis and progression of pancreatic cancer. Here we show that PAUF promotes adhesiveness of pancreatic cancer cells to various extracellular matrix (ECM). Our results further support a positive correlation of activation and expression of focal adhesion kinase (FAK), a key player in tumor cell metastasis and survival, with PAUF expression. PAUF-mediated adhesiveness was significantly attenuated upon blockade of the FAK pathway. Moreover, PAUF appeared to enhance resistance of pancreatic cancer cells to anoikis via modulation of FAK. Our results suggest that PAUF-mediated FAK activation plays an important role in pancreatic cancer progression.


Subject(s)
Humans , Anoikis/genetics , Cell Line, Tumor , Focal Adhesion Protein-Tyrosine Kinases/metabolism , Focal Adhesions/genetics , Lectins/genetics , Pancreatic Neoplasms/enzymology , Proto-Oncogene Proteins pp60(c-src)/metabolism , Signal Transduction/genetics
4.
Experimental & Molecular Medicine ; : 82-90, 2011.
Article in English | WPRIM | ID: wpr-186265

ABSTRACT

It is not yet understood how the enhanced expression of pancreatic adenocarcinoma up-regulated factor (PAUF; a novel oncogene identified in our recent studies), contributes to the oncogenesis of pancreatic cells. We herein report that PAUF up-regulates the expression and transcriptional activity of beta-catenin while the suppression of PAUF by shRNA down-regulates beta-catenin. The induction of beta-catenin by PAUF is mediated by the activities of Akt and GSK-3beta, but inhibition of downstream ERK does not reduce beta-catenin expression. To test whether PAUF emulates either the Wnt3a-mediated or the protein kinase A-mediated signaling pathway for the stabilization of beta-catenin, we examined the phosphorylation status of beta-catenin in the presence of PAUF compared with that of beta-catenin during treatment with Wnt3a or dibutyryl cAMP, a cell permeable cyclic AMP analogue. PAUF expression induces phosphorylation at Ser-33/37/Thr-41 and Ser-675 of beta-catenin but no phosphorylation at Ser-45, indicating that a unique phosphorylation pattern of beta-catenin is caused by PAUF. Finally, the expression of PAUF up-regulates both cyclin-D1 and c-Jun, target genes of beta-catenin, leading to a rapid proliferation of pancreatic cells; conversely decreased PAUF expression (by shRNA) results in the reduced proliferation of pancreatic cells. Treatment with hexachlorophene (an inhibitor of beta-catenin) reduces the proliferation of pancreatic cells despite the presence of PAUF. Taken together, we propose that PAUF can up-regulate and stabilize beta-catenin via a novel pattern of phosphorylation, thereby contributing to the rapid proliferation of pancreatic cancer cells.


Subject(s)
Humans , Adenocarcinoma/metabolism , Cell Line, Tumor , Cell Proliferation , Cyclin D1/metabolism , Gene Expression Regulation, Neoplastic , Glycogen Synthase Kinase 3/metabolism , HEK293 Cells , Lectins/genetics , Pancreatic Neoplasms/metabolism , Phosphorylation , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-jun/metabolism , Signal Transduction , Up-Regulation , beta Catenin/genetics
SELECTION OF CITATIONS
SEARCH DETAIL